

Society of Actuaries in Ireland

Hedging Effectiveness

15.04.14

Structure of Presentation

- Description of stochastic model
- Taylor Expansion and Delta hedge
- Underlying Volatility risk
- Realised Volatility risk
- What to hedge?
- Historic Hedging effectiveness
- P&L attribution
- CBI stress tests/Solvency II
- Practical Considerations

Stochastic Model

- 5 year put option on a stock at today's price
- 1,000 simulations with monthly intervals
- Geometric Brownian motion
- Volatility 20%
- Discount rate 2%
- Real World equity risk premium 3%
- Greeks etc. from Black Scholes formula

Some metrics of the Put Option

Metric at start of term	20% Volatility	40% Volatility
LOV (Risk Neutral)	12.5	28.3
LOV ("Real World")	7.0	20.7
Delta	33	28
Gamma	.008	.004
CTE90 extra capital	30.6	45.8

Taylor Expansion and Delta Hedge

$$\delta Lov = \Delta \delta s + \Theta \delta t + \frac{\Gamma}{2} (\delta s)^2 + o(\delta t)$$

$$\Delta = \frac{\partial Lov}{\partial s}; \quad \Theta = \frac{\partial Lov}{\partial t}; \quad \Gamma = \frac{\partial^2 Lov}{\partial s^2}$$
$$(\delta s)^2 \text{ is } O(\delta t)$$

Two main risks in Delta Hedge

- Underlying volatility can only be estimated
- Rebalancing cannot be continuous

- Incorrect calculation of Delta
- Broadly symmetric but increased variability

Allowance for hedging in capital

	Actual position	"Correct" position
IFRS reserves	12.5	28.3
Extra gross capital	30.6	45.8
Allowance for hedging	-27.5	-27.2
Combined Reserves + Capital	15.1	46.9

Underlying volatility 40% Volatility assumption in hedging, IFRS and capital calculation 20%

Synthetic index of risky asset and cash

Exposure to risky asset = Target Volatility/Realised Volatility

Possibly subject to a Cap

Realised Volatility measured over last 20 days, say

Realised Volatility estimator of Underlying Volatility

Targeting 20% Volatility

Сар	Underlying Volatility		
	15.0%	20.0%	30.0%
100.0%	15.0%	19.1%	20.9%
110.0%	16.4%	20.0%	21.0%
120.0%	17.7%	20.5%	21.0%
130.0%	18.8%	20.7%	21.0%
140.0%	19.6%	20.9%	21.0%
150.0%	20.1%	20.9%	21.0%
No Cap	21.0%	21.0%	21.0%

What should we Hedge?

One Year View (Solvency I Capital)

Historic Hedge Effectiveness

"The extent to which the hedging programme is projected to offset total guarantee liability movements is not to exceed that based on a credible amount (2 years or more) of historical data."

Stress Testing framework for the Variable Annuity Industry *CBI 2013*

Historic Hedge Effectiveness

• Define historic hedging effectiveness as follows:

$$\left[1 - \left|\frac{Hedged P\&L}{Unhedged P\&L}\right|\right]^+$$

Conceptually different from prospective version

Historic Hedge Effectiveness One Year

Historic Hedge Effectiveness

Hedging Rho (interest rate)

- Duration matching
- Optionality hedging
- Duration matching highly effective
 - Possibly flatters historic hedge effectiveness

P&L Attribution

$$\begin{split} \delta Lov &= \Delta \delta s + \Theta \delta t + \frac{\Gamma}{2} (\delta s)^2 + o(\delta t) \\ &< \delta Lov >= \Delta < \delta s > + \Theta \delta t + \frac{\Gamma}{2} < (\delta s)^2 > + o(\delta t) \end{split}$$

$$\delta Lov - \langle \delta Lov \rangle$$

= $\Delta(\delta s - \langle \delta s \rangle) + \frac{\Gamma}{2}((\delta s)^2 - \langle (\delta s)^2 \rangle) + o(\delta t)$

If fully delta hedged:

$$P\&L = \frac{\Gamma}{2}((\delta s)^2 - \langle \delta s \rangle^2 \rangle) + o(\delta t)$$

Unexplained/Residual P&L

Solvency II

Practical Considerations

- Demographic and Behavioural considerations
- Long term and possibly regular premium
- Hedging interest rates important for GMIBs
- Basis risk
- Volatility capping and targeting
- P&L attribution should allow for "cross greeks"
- Product charges
- Transaction costs.

Society of Actuaries in Ireland

Hedging Effectiveness

15.04.14