

Unit Linked Guarantees Harnessing the value of recent experience

Presentation to Society of Actuaries in Ireland Date 21 October 2010

James Maher

- 1. Introduction & Background Papers
- 2. Paper 1 (High Level/Non Technical)
- 3. Paper 2 (Low Level/Technical)
- 4. Regulatory Developments
- 5. The Magnificent Seven

- Long history of
 - Guarantee Provision
 - Mixed track record
- Crisis as an opportunity for learning
- Reducing the Actuarial "Anti Library"
- Achieving sustainable solutions
- Opportunity

- Motivation
 - Consolidating Recent Experience
 - Extending work of Corrie et al
 - Balcony View
 - Walker Review
- Approach
 - Descriptive
 - Linguistic
- Authors & Publication
 - Variable Annuity MIG
 - BAJ Publication

Motivation

- Illiquidity premiums in SII
- Impact of crisis on hedging
- Insurer V Banker
- CP 42 & CEIOPS Task Force
- Approach
 - Descriptive
 - Linguistic
- Authors & Publication
 - Solo Run
 - SAI & Linkedin

The Importance to Insurers of Understanding OTC Option Prices and Liquidity		
OTC Option Pricing for Insurers James Maher Dublin. Seatember 2019		
Telephone: 353 86 828 6588		
-1-		

VIEW FROM THE BALCONY

- Scope & Definition of Products
- •Operating Platforms and Group Architecture
- Risk & Capital

Risk Transfer from Customer to Financial Institution by Product Type

- Market Risk
- Insurance Risk
- Risk Mitigation

- Explicit Risk Mitigation
- Transparency

Charge Transparency

Distributor

- •Shelf space, Commissions, Simplicity
- Security of supply
- •Ease of integration

Asset Gatherer

- Increase assets under manager
- Alpha/Added Value
- Flexibility (T-Vol/TRS etc)
- •Cost sharing –AMC V Repo

Insurance mindset

Policyholder View
Return on "risk" capital
Cheap "beta" & "beta" hedging

Reinsurer/Investment Bank

- •Rider Only => No cross subsidy => full replication cost
- Beta Hedge + Basis Risk V Integrated Hedge
- •Fair Values, Collaterals and Realisable Value

(Source: Milliman presentation at 2008 Infoline VA Seminar)

Elements Activity Activity Activity Expertise, Infrastructure С Α B Capital, Markets Governance Agents, Distributors & Clients Alternatives HUB Decentralised Centralised Out/In Source/Sharing Company Client Distributor

Environmental Issues

Tax/Capital Cost/Infrastructure Regulations & Regulators

Internal Issues

Under/Over Lap Culture & Communication Management & Ability

Mapping/Decomposing Risk

- Extending the Standard Formula
 - New Risks Liquidity, Basis Risks
 - Amplified/Extended Risks Default, Market, Operations, Expense
 - Altered Risks Behavioural

Risk Mitigation & Capital

- Illustrative GMWB
- QIS 4.5 Calibrations
 - Dampener
 - Correlated Vega
- Dynamic Hedge
 - Need 3 Greek hedge
- Static Solutions
 - Credit Risk
 - AAA to A effective
 - BBB marginal

RISK NEUTRAL IN THE REAL WORLD

- Market Risk can be
 - Held, Transformed or Transferred
- Transformation (replication) pricing and insurance pricing <u>are different</u>
- Transformation <u>shortens liability profile</u> and <u>introduces liquidity risk</u>

All roads lead to dynamic hedging (or no hedging!)

The Black Scholes formula for a European put is as follows:

- Exp(-T*R_f)*Strike*N(-d2) Forward* N(-d1)}
- For d1 = { Ln(Spot/Strike)+ (R_f +.5* σ^2)*T} /{ $\sigma^*\sqrt{T}$ }, d2 = d1- $\sigma^*\sqrt{T}$
 - R_f = Risk Free Rate (based on N month Interbank Swap Rate)
 - $\circ \sigma$ = Volatility
 - Strike = Forward = Spot* $Exp(R_f*T)$ = "At The Money" Forward

BS in the Real World $Exp(-T*R_c)*Strike*N(-d2) - Forward*N(-d1)} + RP$ For d1 = { Ln(Spot/Strike)+ T*(R_r + .5*(VOL))} /{(VOL)*\sqrt{T}}, d2 = d1-(VOL)* \sqrt{T} Forward = Spot*Exp(R_r)*T)

In this we exchange

- 1. (IVO) for σ to reflect the adjusted statistical volatility
- 2. (R_r) for R_f to reflect the "repo rate" as the appropriate no arbitrage drift
- 3. (R_c) for R_f to reflect the earning rate for positive cash.

Additionally we will add to this amount an idiosyncratic adjustment "RP" being a risk premium to reflect the market participants' level of risk aversion or expected excess margin. In the absence of two way prices (Bid/Ask) this will include the ask margin over the mid price.

- Inferred parameter given known option price
- Related to expected stock price process
- But Includes adjustments
- Transaction costs
 - Round Trip Cost of Rebalance
 - Impact of "slippage"
- Discrete time hedge error
 - Function of time step, volatility and "gamma"
 - "Expected" ultimate cost is nil but not deterministic
 - "utility" cost for interim noise and ultimate outturn
- Market Equilibrium

Impact of Liquidity and Trade Frequency on Hedge Cost (Excluding Commission, Slippage and Admin Costs)

Hedge Error 3.0% 2.5% Transaction Cost in Volatility Points % 50.70 % 50.70 % 50.70 % 50.70 Hedge Error Hedge Error Hedge Error 0.0% 0.05% 0.1% 0.5% 1.0% Round Trip/Bid Ask ■10% ■20% ■30%

Transaction Costs and Volatility Weekly Rebalancing

Repo = Repurchase Agreement

 Term to reference a collateralised lending agreement where an asset is temporarily sold with requirement to repurchase at a later date

Repo Rate

- Refers to the rate of interest on the loan agreement

Application

- Liquidity
- Balance sheet management (Repo 105)

Stock Lending

- Covered "Short" Sales

Related Concepts

- Futures "Implied Repo Rate"
- Total Return Swap

Discount Future Claims = Exp(-r*t)

– Risk Free = Overnight Interest, N month Libor, Treasury, Other ?

• (Pre Crisis) Industry Standards

- Exchange Trades = Overnight Interest Swaps
- OTC = LIBOR Swap
- LIBOR Swap ≈ OIS Swap (circa 10bps)

Crisis

- Bank Credit Risk/Liquidity Crisis
- Libor >> OIS

Post Crisis

New equilibrium - LIBOR > OIS

• Situational Discount Rate ?

- Collateral and Collateral Structure Count
- Discount rate follows own investing freedom adjusted for risk

- Discount rate based on Price of Option
- Repo Rate applied to Delta of Units protected
- Borrow cost depends on margins/haircuts for repo

Element of the Basis	Stable Market
Statistical Volatility	20%
Risk Free Rate*	5%

Element of the Basis	Stable Market
Transaction Costs (Volatility)	+ 2% (20%+2% = 22%)
Uncollateralised Borrowing	5%
Repo Rate	30bps
Overnight Investment	20bps
Risk Margin/Profit Loading	+5% (Price*105%)

50.00% 45.00% 40.00% Price as % of Underlying Index Unit 30.00% 01 Underlying Index Unit 52.00% 20.00% 15.00% 15.00% 10.00% 5.00% 0.00% Term

Fully Loaded OTC Price

Theoretical Price Bid/Ask Adjustment Repo Adjustment Risk Free / Collateral Adjustment Residual Risk/RoC Margin

Impact of Aversion and Micro Structure on Price

- Not stable over time
- Correlated (Level of Rates, Markets, Each Other)
- Adjusted Vol & Repo a proxy for basis risk
- Implicit price adjustment for hedging "illiquid" funds

Impact of Dislocation on IVOL Measure

- Resulting Implied volatility when we solve price against the Libor Curve with no other loadings
- Material, upward sloping, volatile

Regulatory Developments

CP42 Solvency II

Submission on the Financial Regulator's Consultation Paper "Investment Guarantees – Guidance on Reserving and Risk Governance" (CP42)

July 2010

- Motivation
- Risk <u>&</u> Governance Framework
- Convergent with Solvency II
- Progressing the Discussion
- CEIOPS Task Force
- Time and Timing

– Dynamic Hedging V Rolling Hedges

- Jump before the crash/Rebalance during crisis
- Clearly Defined, Basis Risk, Liquidity

Counterparty Risk

- Collateral V Cash Settled
- Contingent Risk (impact of mitigation)
- Cash at Bank V Cash Equivalents
- Internal Unrated V External Unrated

- Market Consistent Pricing

- Calibrate to Market V Illiquidity Premium
- Historic Volatility V Implied Volatility
- Separating the Reference Rate from Volatility
- Definition of "Bank"
 - Regulated under CRD V Deposit Lending

MAGNIFICENT SEVEN

